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ABSTRACT

This study examines in detail two pressure-velocity

coupling schemes, both of which solve the fully implicit

discretized equations governing the flow of fluids, and

assesses each one's capability of performing large Reynolds

number, low Mach number compressible flow calculations. The

semi-implicit iterative SIMPLE algorithm, which was origi-

nally developed for incompressible flows, is extended to

handle transient compressible flow calculations. This

extension takes into account a strong coupling between the

pressure and temperature through a correction procedure,

based on the equation of state. Results obtained from the

extended SIMPLE algorithm are then compared to similar

results obtained from the non-iterative PISO algorithm.

Both time-dependent and steady state calculations

were performed using an axisymmetric 2:1 pipe expansion

geometry and laminar flow conditions corresponding to

Reynolds number of I000 and Mach number of 0.20.

For calculations simulating a time-dependent

compression/expansion process, both schemes exhibit tran-

sient features in excellent agreement with each other, and

moreover, the PISO method shows a significant computational

time reduction of 60% over the SIMPLE scheme, regardless of

the time step size or grid size employed. The effects of

p.RgClq, DlNO p AC}F; BI.,ANR Nf-)T ,_'tI.,lf_'gD
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numerical diffusion are shown to be significant in these

calculations.

For steady state compressible flows, however, the

SIMPLE algorithm displays increasing computational effi-

ciency over the PISO method as the time step sizes employed

to reach steady state conditions are decreased. The

accuracy of the steady state results are questionable for

both algorithms when very large time step sizes are used to

march to steady state conditions.
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CHAPTER I INTRODUCTION

The partial differential equations governing fluid

flows are nonlinear and too complex to obtain the solution

in any analytical form, therefore computational methods for

simulating flow fields must be employed. Since problems of

practical interest include a very wide range of flow

situations, it would be desirable to develop a single

numerical algorithm capable of reliably handling many flow

conditions in an efficient manner.

The numerical modeling of the physical mechanisms of

turbulence effects, multiphase flows, and combustion are

very complex individually, and the formulation of an

algorithm combining all of the above mechanisms would be a

formidable undertaking. However, an approach can be adopted

such that one aspect of the numerical simulation can be

considered individually and collectively common to the above

processes; this aspect being the Navier-Stokes flow solver.

Therefore, the development of a versatile and generalized

flow solver which could efficiently handle both

incompressible and compressible flows, i.e. flow at all

speeds, in steady state or time dependent flow conditions

would be the first logical step in producing a fully

comprehensive fluid flow simulator.

In the early applications of numerical flow modeling

[Gosman et al. (1969)], vorticity and stream function were
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usually the calculated variables. This approach has the

advantage of eliminating the pressure from the governing

equations, thereby eliminating the difficulties associated

with the determination of pressure. However, the short-

comings of the stream function/vorticity method are

numerous. This method is limited to incompressible flow.

The boundary values of vorticity at the wall are difficult

to specify. The extension of the stream function/vorticity

method from two to threedimensions, for which a stream

function does not exist, yields a very complex formulation.

Hence, techniques such as this are excluded as viable

candidates for a generalized flow solver due to their

inherent lack of generality.

Due to the difficulty of visualizing and inter-

preting the meanings of vorticity and stream functions,

methods based on the physically meaningful so-called

primitive variables, namely pressure, density, and velocity

components, gained preference. The earliest development of

primitive variable schemes were the semi-implicit transient

Marker-and-Cell method (MAC) [Harlow et al. (1965)] and

Simplified MAC (SMAC) [Harlow et al. (1970)] by the Los

Alamos group. The most widely recognized primitive variable

Navier-Stokes solvers can be generally classified into two

schemes.

Making use of density's explicit appearance in the

continuity equation, the density-velocity schemes choose
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density as a main dependent variable, whereby pressure is

calculated from it via an equation of state. Many density-

velocity coupling schemes [Briley and McDonald (1980),

Pulliam and Steger (1980)] have a disadvantage when the

incompressible flow limit approaches as the linkage between

pressure and density weakens in the low Mach number range.

Because the variations of density in incompressible flows

cease to relate to those of pressure, the density-velocity

schemes are applicable to compressible flows only and,

therefore, should not be used as a generalized flow solver.

Many existing methods developed specifically for

incompressible flows surmount this problem by treating

pressure as a primary dependent variable. These pressure-

velocity coupling schemes are equally valid for compressible

flows, which endow methods based on it with great

versatility. These methods basically derive a working

pressure equation through Joint manipulation of the momentum

and continuity conservation equations.

Existing methods which utilize pressure-velocity

coupling fall into two catagories, namely, semi-implicit and

fully implicit schemes. Because of their reliance on

explicit differencing, semi-implicit techniques can be at a

disadvantage for time-dependent computations, since the

time,step size necessary to retain stability of such methods

may drastically impair the efficiency of the algorithm

particularly when applied to the calculation of steady-state

flows. Implicit methods on the other hand, do not suffer
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from time step restrictions. They do, however, require the

solution of sets of non-linear simultaneous equations for

each of the dependent variables per time step.

The most popular method for solving pressure-

velocity coupled incompressible flows is the SIMPLE algo-

rithm of Patankar and Spalding (1972) and it variants:

SIMPLER by Patankar (1980), SIMPLEC by Van Doormaal and

Raithby (1984), SIMPLEX by Van Doormaal and Raithby (1985),

and SIMPLEST in Sha (1985). The advantages gained by the

implicit differencing of the SIMPLE method, which is based

on a pressure correction procedure, are offset by the use of

iteration which makes time dependent calculations rather

expensive as iteration is required at each time step. The

SIMPLE methods can be extended to handle compressible flow

calculations as shown by Van Doormaal et al. (1987). This

conventional compressible approach as implemented by Van

Doormaal et al. (1987) accounts for additional variations in

density through an equation of state-based pressure-density

coupled correction scheme. Although applicable to a wide

variety of flows, there are certain flow situations in which

the conventional approach is inappropriate and fails to

yield acceptable results. Recognized and addressed by

Gosman and Watkins (1977), these flows are ones in which the

temperature is strongly coupled with the pressure and

velocity, such as chemically reacting flows and

compression/expansion-type processes.

Another method for handling the pressure-velocity
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coupling of implicitly-differenced fluid flow equations is

the recently introduced non-iterative PISO algorithm of Issa

(1985). This method splits the process of the solution into

a series of predictor and corrector steps such that, at each

step, a simplified set of equations in terms of a single

unknown variable is obtained. The PISO algorithm has

exhibited a very efficient and robust nature when applied to

a variety of flows as shown by Benodekar et al. (1985) and

Issa et al. (1986).

In this study we shall extend the incompressible

SIMPLE algorithm of Patankar (1980) including the time-

transient and non-isothermal modifications of Bai (1986) and

Bai et al. (1987) to handle compressible flow calculations.

This extension will take into account the strong coupling

between the pressure and temperature. Results obtained from

the extended SIMPLE algorithm simulating a time dependent

compression/expansion process will be compared to similar

results obtained from the non-iterative PISO algorithm.

Finally, steady state compressible flow calculations will be

presented and compared for both algorithms.



CHAPTERII GOVERNINGEQUATIONS

The governing conservation equations for mass,

momentum, and thermal energy in axisymmetric coordinates

with x-r-e velocity components u-v-wcan be written in a

differential equation of general form [Patankar (1980)]

--(p_) + --(pu_) + ---(r0v_) =-- P_ + --- rP_ + s_
8t %x r 8r %x r 8r

.(2.1)

where p is the fluid density and _ is any of the dependent

variables used. The diffusion coefficients r# and the

source terms S# in each equation for Newtonian fluid [Bird,

Stewart, and Lightfoot (1960)] are listed in Table 2.1.

The pressure and density are related by an equation

of state, which is taken in this study to be that of a

perfect gas such that

p = pRT (2.2)

where R is the gas constant.

6
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Table 2.1 Exchange Coefficients and Source Terms for

Variable # P_ Source S_

Continuity

1 0 0

Momentu_

u _pl_f_uI l_rr_vI---- + ---- __ + ---- __

8x 3 8x_ 8x] r 8r_ OxJ

av 8v
3 r x 3 8x_ 8rJ

v _pll_rr_vI 2_f_u1
8r 3 r %r_ %rJ 3 8r_ 0xJ

0 I 0u ] 4 v+ .... _-
Ox _ 0rj 3 r 2

Thermal Eneray

CvT.
uCp

Pr I v %v 8u 1
-p -- +--+ __

r 0r 0x

+-- g +-- _

3 3

+ I Ou ov I z 4
Or Ox 3

4 v I Ov Ou)
-- -- /j. -- -- +--

3 r Or 0x

Ov 0u

Or %x

+ --
3



CHAPTER III FINITE DIFFERENCE EQUATIONS

A. ComDutatlonal

The finite difference equations are solved on the

staggered grid mesh system, in which the velocity components

are stored at locations staggered with respect to those at

which the pressures, densities, and temperatures are stored.

Figure 3.1 shows such a staggered arrangement.

w
uw

O p m-._

/ \
p,p,T

v a

o
S

u-velocity Control

v-velocity Control

Mass and Energy ConservationControl Volume

Volume

Volume

O Density, Pressure, and
Temperature Nodes

--_ u-velocity Node

v-velocity Node

Figure 3.1 Staggered Grid Arrangement of Nodes and Control
Volumes

8
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The staggered grid has a number ofkadvantages

[Ferziger (1987)]. First, the differencing scheme for mass,

momentum, and energy conservation can be developed in a more

realistic and natural way when the staggered grid approach

is employed. The mass flux terms based on the staggered

velocities are well suited to the difference form of the

mass conservation equation, and momentum's pressure gradient

terms are centered about the velocities they drive, thus

avoiding the "checkerboard effect" in the pressure field

[Patankar_(1980)]. Also, treatment of the boundary condi-

tions is easier when the staggered grid system is used,

especially for the pressure. With staggered grids, the

domain boundary can be chosen to fall on velocity nodes,

thereby making it possible to avoid specifying any explicit

boundary conditions for the pressure at the surface. The

major disadvantage in using the staggered grid approach is

that separate control volumes must to be constructed for

each variable, which requires more memory than using a non-

staggered grid approach.

B. Discretization

The discretized transport equations are obtained

using a finite-volume technique in which the difference

equations are formally derived by integrating the differ-

ential conservation equations over its respective control

volume.

The unsteady terms of the general differential

equation (1) are handled using a first order accurate



backward temporal difference scheme, although any second

order differencing scheme can be easily incorporated.

The convective and diffusive terms are represented

by the hybrid difference scheme, which is thoroughly

presented by Patankar (1980). The basic premise of the

hybrid scheme is that second order accurate central

differencing of the convective term is preferred when the

cell Reynolds number (Peeler number), Pe - pu£x/P, is less

than two. For larger values of Pe, first order accurate

upwind differencing of the convective term is required to

obtain stable solutions for highly convective flows. The

hybrid approach can be briefly summarizedby

[ PeUe_g -- peUe_p --
r,e

e

, o
_x 2

(3.1)

I0

where ax is the grid distance between adjacent nodes.

The deficiencies of the hybrid approach are the

upwind scheme's first order accuracy and a form of

discretization error often referred to as "numerical

diffusion" [Patankar (1980)]. Higher order hybrid ap-

proaches can be adopted which replaces the upwind differ-

encing by either the QUICK scheme of Leonard (1977) or the

skewed upwind method of Raithby (1976) for high cell

Reynolds numbers. Both the QUICK and skewed upwind methods

are more accurate than the simple upwind method on a given
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grid;_but they sometimes produce solutions with oscillations

[eyed et al. (1985)].

The final form of the fully implicit discretized

general differential equation (2.1) is obtained as presented

by Patankar (1980)

I z_- _p + -- #p " anb#nb + S#AV + p0 #p (3.2)
At/ At

where the coefficient "a" represents the finite-difference

representation of the spatial convective and diffusive

fluxes associated with #, AV i8 the volume of the

appropriate control volume, and At is the time step size.

In conformity with the fully implicit practice, the values

superscripted with 0 are to be regarded as those values

existing at the "old" time step, while all values with no

superscript are regarded as "new" time-step values.

C. Solution of th____eAlmebraic Ecnaations

By vi_ue of _e simple form of the discretized

equation (3.2), the solution for the dependent field

vari_le can be conveinently obtained by an algebraic

equation solver using the TDMA (Tri-Diagonal Matrix Algo-

rithm).

Although equation (3.2) is cast and solved as a

linear algebraic equation, nonlinear situations arise when

the momentum and enerc_ conservation equations are repre-

sented in the form of (3.2). This nonlinearity exists when

the coefficients a e and anb themselves depend on #, or the

source term S# is a nonlinear function of #. Iterative
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methods of solution must then be employed to handle the

nonlinearity by solving the set of equations repeatedly with

updated coefficients or source term values evaluated from

the newly obtained _ values. In this way, the degree of

accuracy to which the nonlinearity of the equation is

handled depends upon the number of times the TDMA is

repeatedly solved. In this study, a line-by-line iterative

scheme is used in conjunction with the TDMA in order to

solve the set of fully implicit discretizedequations (3.2).

Since boundary condition information is transmitted at once

into the interior of the calculation domain, the line-by-

line method possesses faster convergence rates than point-

by-point methods.

_v



CHAPTER IV SOLUTION PROCEDURES

Because of the roles the pressure and its gradients

play in each of the transport equations, the determination

of an accurate pressure field is essential for the complete

calculation of a flow field. However, the lack of an

explicit equation governing the pressure is a primary

obstacle to solution of the Navier-Stokes equations. In the

following sections, methods of predicting the pressure

field, which use the Poisson equation for the pressure in

place of the continuity equation, will be presented. The

extension of these methods into generalized methods capable

of handling incompressible as well as compressible flows

will be developed.

A. SIMPLE Alqorithm

i. Incompressible Flows

Examining the governing u e momentum equation of the

form given by equation (3.2) with the general variable

equated to u e and the variables P# and S# specified in Table

2.1, the resulting discretized equation becomes:

oo_V 1 AV oae + -- Ue = anbUnb + (PP -- PE) Aere+ b + p°--u e
At) At

(4.1)

where b is the remaining source terms after the pressure

gradient is explicitly written and r e is the radius locating

the center of the face area, Ae, of the u-velocity control

13



volume from the cylindrical coordinate line of symmetry.

Note that for incompressible flows, density is considered

constant (i.e. "old" densities equal "new" densities).

Rewriting equation (4.1) in terms of estimated values of

14

velocities u* and pressures p* and subtracting the resulting

equation from (4.1) gives fully implicit velocity correction

equations, given by

la+0 lu
At/

where

u I m u -- u*

"_ anbU'nb + (P'p - P'E) Aere (4.2)

or u = u* + u' (4.3a,b)

p' = p - p* or p = p* + p' (4.4a,b)

Similar equations apply to the v-velocity field.

Unless the correct pressure field is used in

equation (4.1), the resulting velocities will not satisfy

continuity. One way of improving the solutions of equation

(4.1) is to correct the pressure field p via equation

(4.4b), thus requiring an equation for obtaining pressure-

correction p'.

Characteristic of the SIMPLE method, the term

ZanbU'nb in equation (4.2) is neglected [Patankar (1980)]

thus, velocity-correction in terms of Pressure-correction

only is obtained, given by

u e, = de(pp' - p_,)

where

(4.5)
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d e = (4.6)

p0_V 1
a, + _/

Substituting equation (4.5) into equation (4.3b) gives a

linearized velocity equation for ue, which in turn is

substituted into discretized continuity and gives the

equation in terms of pressure-correction p' only. Once the

p' equation has been solved, an updated velocity field can

be obtained from equations (4.5) and (4.3b).

The above outlined pressure-correction procedure has

been termed the SIMPLE (_emi-_mplicit Hethod for Rressure

Linked _quations), where the semi-implicitness is derived

from the fact that the _a, bU',b was neglected in (4.2). The

SIMPLE algorithm requires an iterative-type solution proce-

dure due to:

i). the inter-equation coupling between the transport

equations and

ii). the nature of the correction-type process of equations

(4.3b) and (4.4b).

A variant of the SIMPLE method is the SIMPLEC

approximation described by Van Doormaal et al. (1984), which

in general produces a faster rate of convergence for certain

flow situations. The SIMPLE algorithm neglects the _anbU',b

term in equation (4.2), but a term of similar magnitude is

retained in ae on the left-hand side of the equation.

SIMPLEC introduces a "consistant" approximation, such that

_anbU' e is subtracted from both sides of equation (4.2)
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giving

a +. po....., _. _anb u I • " anb(U'nb - U'e)

+ (P'P -- P'E) Aere (4.7)

Now in the SIMPLEC approximation, the Zanb(U'nb - U'e) term

is neglected and the velocity correction is given by

equation (4.5), except now

Aere

de = (4.S)

ae + O0_ _an. b •
at

The role of pressure in the incompressible flow case

is to correct velocities through the momentum equations such

that the resulting velocities conserve mass. This interpre-

tation of the role of pressure arises because only velocity

and not pressure appears in the mass conservation equation

[Van Doormaal et al. (1987)].

2. ComoressibleFlows

Due to the nature of compressible flows, additional

variations in the density and temperature must be

considered. The conventional approach for treating

compressible flows will be presented and a generalized

approach applicable to a wide variety of flow situations,

for which the conventional approach suffers, will be

developed.

a. Conventional Approach

To account for the spatial variation of the density

field in compressible flows, the SIMPLE algorithm's
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pressure-correctionprocedure for computing incompressible

flows is extended by Van Doormaal et al. (1987) such that an

updated density field can be conveniently obtained from a

pressure-correction p'.

obtained as

The density-correction formulais

P = P + (4.9)

where p* is the latest current estimate of density. The •

compressibility correction factor (Sp/Sp) is calculated from

the equation of state. For a perfect gas, (Sp/%p) = 1/RT.

In order to remain general, the conservation of mass

equation should be satisfied by mass fluxes which include

the influences of velocity correction obtained from equa-

tions (4.3b) and (4.5) and also density corrections of

equation (4.9). The necessary mass flux term possessing

both of these influences can be linearized by

(puA) : [pu*A] + {p*uA} - (p*u*A) (4.10)

where the superscript * denotes the latest current estimate

of the dependent variable. The mass flux term enclosed in

the [] brackets indicates that its density is approximated

by the density correction formula (4.9), and the mass flux

term enclosed by the (} brackets has its velocity

approximated by the linearized velocity correction given by

substitution of equation (4.5) into (4.3b).

The values for density in the mass flux terms (4.10)

of the continuity equation are evaluated using the upwind

scheme, as opposed to the practice of using averaged values
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of density as is utilized in the remaining conservation

equations. The upwind scheme is discussed by Patankar

(1980) and can be represented

(puA) e = pp max{ Ue, 0}A e - PE max(-Ue, 0}Ae (4.11)

Substitution of the upwinded-density form of equa-

tion (4.10) into the discretized continuity equation yields

a pressure-correction equation. The solution of the

pressure-correction equation is used to calculate updated

values of density and velocity.

The role of pressure in compressible flows becomes

that the pressure must influence the velocity through the

momentum conservation and density through the equation of

state such that together the resulting velocities and

resulting densities conserve mass.

b. Generalized Approach

It is the objective of this study to obtain a

generalized scheme for calculating flow fields involving

pressure-velocity coupled variables. To do so care must be

taken to ensure that calculation procedures are applicable

to incompressible as well as compressible flows and also

that the intricate coupling of pressure-velocity-density-

temperature is handled in a complete manner as possible.

If the method used for approximating the mass flux

terms given by equation (4.10) is examined with the concept

of generalization in mind, several observations become

clear. The mass conservation equation resulting from the

insertion of the linearized mass flux terms (4.10) has the
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attribute of being linearized in terms of both velocity and

density, which ensures applicability to both incompressible

as well as compressible flows. Van Doormaal et al. (1987)

notes that neglecting the influence of density correction in

mass conservation restricts the application of the resulting

solution method to low Mach numbers and incompressible

flows. Also, procedures accounting for density correction

alone, with no velocity correction, limits the applications

to compressible flows with very small time steps required in

the low Mach number range to maintain stability.

In order for a generalized approach to handle the

strong pressure-temperature coupling demanded by, for

example, chemically reacting flows, buoyancy-driven flows,

and expansion/compression-type processes, the conventional

density correction formula (4.9) is modified such that a

stronger influence from the temperature field is felt

throughout the updated density field and is given by

P = 0* + P' + T' (4.12)

where (ap/aT) is an expansivity correction factor and is

calculated from the equation of state. For a perfect gas,

(ap/aT) = -p/RT 2. T' is the temperature correction and in

this study is simply defined as the temperature difference

between successive time steps, n+l and n, given by

T' = T "+I -- Tn (4.13)

By replacing the conventional density correction

formula with the modified form (4.12), a pressure correction
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equation can be derived as before except that a stronger

influence from the temperature field is included. The

resulting generalized pressure-correction equation is given

by

app'p = aEP_ E + awp' w + aNp, W + asP, s + b + b T (4.14)

where

aE = PedeAere + Aere max{-u e, 0}

E

(4.15a)

a w = pwdwAwrw + Awr w max( u w, 0}
H

(4.15b)

a W = PndnAnr n + Anr n max{-Un, 0}

N

(4.15c)

a s = psdsAsrs + Asr s max{ us, 0}

s

(4.15d)

aV , , , ,

-- + #edeAer e + PwdwAwrw + PndnA,rn + psdsAsrs
at

+
, ,

Aer e max{ Ue, 0} + Awr w max(-Uw, 0}

• * l+ Anr n max{ Un, 0) + Asr s max(-us, 0)

(4.15e)

aV 0 • • , , ,

b = -- {pp -- pp} - PpAer e max( ue, 0} + PEAere max{-Ue, 0}
at

+ p_Awr w max{ uw, 0} -- ppAwr w max{-Uw, O}

-- ppAnr n max{ Un, 0} + PNAnrn max{-Un, 0}

+ 0sAsrs max{ us, 0} -- ppAsr s max{-us, 0}

(4.15f)
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b T =

at p

+ T'pAer e max{ Ue, 0} -- T'EAer , max(-u:, 0}

P E

+
T'rAwrw max{-u w, 0} -- T'wAwrw max( u w, 0}

P W

+

P

T'rAnr n max( u,, 0}- T'xAnr . max{-u:, 0}

N

+ T'rAsrs max(-us, 0} -- T'sAsr s max(

P s
(4.15g)

* * * and Ps*where Pe , Pw , Pn , correspond to the upwind nodal

values of density, and dw, dn, and d s are similar to d e as

defined in equation (4.6). Notice that the above pressure-

correction equation incorporated:

i). an upwind-like nature as defined by (4.11),

ii). influences from the compressibility correction term

of (4.9), and

iii). the b T source term, which contains the expansivity

correction term influences of equation (4.12). Upon

solving (4.14) for the p' field, updated density fields are

calculated from equation (4.12) and updated velocity fields

are calculated from equations (4.3b) and (4.5). Each of

these fields are now sufficiently coupled to temperature.

The generalized SIMPLE algorithm consists of the

following steps:

i. Guess the pressure p*, density p*, and temperature T*.



2 Solve the momentum equation (4 i) based on p* *• . ,p,

T* for u* and v* velocity fields.

3. Solve the p' equation (4.14) and update the pressure

by equation (4.4b).

4. Update density using the density correction formula

(4.12).

5. Update velocities u and vby the velocity correction

equations (4.3b) and (4.5)

6. Update the temperature field using equation (3.2) and

appropriate values for the general variable #.

7. Repeat steps 2 through 6 until convergence is reached.

8. March to next time step in the time-marching

formulation (or assume that steady-state conditions

have been achieved in the iterative formulation.)

The above mentioned methodology requires an iter-

ative procedure using the TDMA equation solver. The use of

iteration for time dependent calculations are expensive

since iteration is required at each time step. Also,

convergence of the solution domain is troublesome and can

not always be assured.

Recently, non-iterative methods and fractional step

methods [Kim and Moin (1980)] have been developed which

makes use of splitting methods in order to efficiently

obtain flow field solutions that satisfy the conservation

equations without resorting to iteration. One such non-

iterative method is the P_SO (Pressure-Implicit with

Splitting of Operators) algorithm of Issa (1985) which is

22

and
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capable of handling the pressure-velocity coupling of

implicitly discretized fluid flow equations and is described

below.

B. PISQAl_rithm

i. Compressible Flows

The discretized governing equations used in the PISO

algorithm are developed using the same procedures outlined

in Chapter II. The final form of the general discretized

differential equation is, however, modified using the

continuity equation such that the following form is

obtained.

I v 0+ pep = anb#nb + SpaV + p0 #p (4.16)
at

where A 0 = ap + peUeAere - pwUwAwrv + PnUnAnrn - psUsAsrs

(Issa 1986b) with the same ap used in equation (3.2). The

primary difference between equations (4.16) and (3.2) is

that (4.16) has the left hand side in terms of the "new"

density, which is more amenable to the predictor-corrector

methodology of PISO.

The nonlinearity in equation (4.16) arising from the

dependency of the coefficients A 0 and anb on the field

variable #, which is normally treated through iteration in

the TDMA line-by-line solver, is now handled by treating the

coefficients as constants evaluated at the "old" time level

values.

The formal order of accuracy of the approximations

of the exact solution obtained by the splitting of
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operations depend on the number of operation-splittings

used. It has been shown by Issa (1985) that at least two

corrector stages will resolve a pressure field free from the

influences of error in the divergence of the calculated

velocities. This two stage splitting principle as applied

to pressure-velocity coupled variables is now presented

below•

Let the field variables of the converged solution at

the "old" time step be represented by the superscript " and

the values of velocity and temperature at the predictor,

first corrector, and second corrector steps be denoted by

superscripts *, **, and ***, respectively. The correspond-

ing intermediate values ofthe remaining field variables

(p,p) will also be denoted by the superscripts *, **, and

1). Momentum Predictor Step

Substituting the pressure and density fields pre-

vailing at the "old" time step into equation (4.16), the

predictor velocity field Ue* may be obtained by solving

AT:1 0+ Pe°Ue = H(Ue* ) + (pp
0

o o _V o
-- PE)Aere + Se_V + pe-- Ue

At

(4.17)

where the H(u e*) operator stands for Za n bUn b • It should be

noted that at this staqe p0, p0 add u* satisfy momemtum

conservation, but continuity is not satisfied by p0 and u*.
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2). First Momentum Corrector St__tg_

The momentum equation is now written in terms of a

new velocity field ue** and its corresponding new pressure

field p* and new density field p* giving

a_ A 0 I ** *+- Pe*Ue = H(ue* ) + (pp
pe °

* oaV 0

-- PE)Aere + SeaV + Pe-- Ue
At

(4.18)

An incremental form of the momentum equation is obtained by

subtracting equation (4.17) from (4.18) giving

,Ue, , , * 0 * oPe -- p,OUe =- +- (PE-PE) -- (PP--PP) Acre
pe °

where

= _ ce [(p,_p0)E -- (p,_p0) P] Acre (4.19)

a_ A° I - 1c i = Air i + -- (i = e,w,n,s) (4.20)

pi °

Substituting equation (4.19) and its similarly derived west,

north, and south counterparts into the continuity equation

based on intermediate values of velocity and density, which

is given by

aV

-- (pp
At

o) p'U** *U**-- pp + ( )eAere -- (p )wAwrw

+ (p*U**)nAnr" -- (p*U**)sAsr s = 0 (4.2z)

leads to the incremental pressure equation written as

Ce[(p*_p0)E -- (p*_p0) p]Aer, _ cw [(p,_p0) P _ (p,_p0)w]Awrw

+ cn[(p_-pV)_ -- (p_-p_) p]Anrn -- Cs[(p_-p °) p -- (p__p0) s]Asrs

_V

-- (pp
_t

o OU* Aere (pOU*)-- PP ) + (P )e -- wAwrw

+ (p°U*)nAnr n (p°U*)-- sAsr s (4.22)
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Eliminating pp* in favor Pe* is accomplished by invoking the

first corrector step equation of state, which is given as

* p*/RT 0p - (4.23)

The following pressure-increment equation is then obtained

ap(P*-P °) p = aE(p*-p°)E + aw(p*-p°)w

+ a,(p*-p°), + as(p,_p0) $ + b (4 24)

where

a E = CeAer e

a m = chAnt n

a w =cwAwr w

a s = csAsr s

(4.25a,b)

(4.25c,d)

1ap = a E + a W + a m + a s +-
at 0

(4.25e)

b = (p°u*)wAvr w -- (p°U*)eAer e

+ (p°U*)sAsr s -- (p°U*)nAnr n (4.25f)

This equation can be solved for the (p,_pO)_field, which

yields the p* field. Equations (4.23) and (4.19) may then

be used to determine the p* and u** fields, respectively.

The continuity relation (4.21) is now satisfied by p* and

u** however the momentum equation (4 18) is not satisfied

to an acceptably accurate degree.

3). Temperature Predictor Step

After substitution of the latest values of the field

variables into the thermal energy, equation, the predictor

temperature field T* may be calculated from
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I 1
PP

pp*CvTp* _ *(uv**Avrv Ue**Aer e= anbTnb* + pp

+ us**Asr s -- Un**Anrn)

aV
0 0

+ b + pp -- CvT P
at

(4.26)

4). Second Momentum Corrector St__

The most current updated field variables are

utilized in writing the operative second corrector momentum

equation, which is taken as

+ 1
Pe

Pe**ue*** = H(ue**) + (PP** -- PE**)Aere + SeaV

aV

+ pe°--Ue °
at

(4.27)

Subtracting equation (4.18) from (4.27) yields, after some

algebra, the incremental form of the momentum equation given

by

**Ue*** *U ** = + _e H(Ue** -- ue*)
Pe -- Pe e ,

-- Aere[(P**-P*)E -- (P**-P*) P]

I" °I }Pe -- Pe

+ A 0 Ue**
0

Pe

(4.28)

Substituting equation (4.28) and its similarly derived west,

north, and south counterparts into the continuity equation

based on u*** and p**, a pressure equation is obtained in

terms of the pressure increment (D**-p*).

Like the first corrector pressure equation, the

remaining p** terms originating from the continuity equation

are eliminated by invoking the equation of state
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** p*p = */RT* (4.29)

The second corrector pressure-increment equation

then is written

ap(p**-p*) (p** p* * p*)P = aE - )E + aw(P* - H

+ ax(p**-p* ) (p** p*N + as - ) s + b (4.30)

where

aE = CeAere aw = CvAwr w (4.31a,b)

ax = CnAnrn a s = CsAsr s (4.31c,d)

a r = a E + a N + a x + a s + --
at *

b = C w H(uw**-Uw*) + A0

--C e H(U, *-u,*) + I ip,_pOA° o
P

e]
,]

ol

+ C s H(u, *-u,*) + p*_pO U**}Io]
*E- Cn H(u n* *• -Un ) +

at R * T o

p*-p ° 1

(4.31e)

(4.31f)

'aV Ao ]-ICi* = Airi [_t + --, (i = e,w,n,s) (4.31g)
Pi

Upon solving equation (4.30) for the (p**-p*)

incremental pressure field, the updated density p** may be

obtained via (4.29) and the u*** field can be explicitly

calculated from (4.28).
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Figure 4.1 illustrates in a simplified manner the

non-iterative methodology adopted by the PISO algorithm for

calculating the field variables through one time step. The

functionally dependent variables of each corrector step

operation is shown, and also the manner in which the

variables are then calculated is illustrated.

2. Incompressible Flows

The PISO algorithm is equally applicable to incom-

pressible flows. At low Mach numbers, the density becomes

weakly linked to pressure, and the equation of state (2.2)

ceases to apply. The derivation of the time-dependent forms

of the incompressible predictor and corrector equations

follow in the same manner as before, except that density is

now treated as constant. For isothermal flows, the

predictor step for energy conservation does not have to be

solved.
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Figure 4.1 Simplified PISO Algorithm Methodology



CHAPTER V DEMONSTRATION PROBLEM AND PROCEDURES

The demonstration problem chosen in this study is

characterized by large Reynolds number, low Mach number flow

conditions; no attempt has been made in this study to

calculate flows in the transonic or supersonic regimes.

Because large Reynolds number, low Mach number-type flows

occur frequently in practical situations, this problem may

serve as a good benchmark problem for evaluating the

performance of different fluid flow algorithms. Great

versatility is required by an algorithm in the computation

of large Reynolds number subsonic flows, particularly when

the flow attains different speeds either in different

regions or at different instants (e.g., the flow in a

reciprocating engine at different parts of its cycle.) In

the calculation of the low Mach number flows of practical

interest, such as the elevated temperature (high speed of

sound) internal flows of liquid rocket engines, the

importance of using pressure-velocity coupled schemes is

recognized because of the small density gradients in the low

Mach number range.

A. Time-dependent Compressible Flow

I. D_m_Ds_i_ Problem Geometry

The time-dependent compressible flow case chosen is

that of an axisymmetric laminar flow compression/expansion

process in a duct with a sudden expansion at inlet and the

31
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downstream end closed, so that the fluid mass inside the

duct varies with time. Figure 5.1 illustrates the test

geometry used. The ratio of the duct diameter to that at

inlet is 2:1 and the length of the duct is 4 times the duct

diameter. The velocity profile at inlet is assumed to be

uniform in the radial direction and is taken to vary

sinusoidally with time, as illustrated by Figure 5.2, such

that peak velocity V corresponds to a Reynolds number, based

on peak velocity V and the duct diameter, of i000 and a Mach

number of 0.2. The period of the sinusoidal cycle is taken

as twice the time required for a particle traveling at peak

velocity V to traverse the length of the duct. The time-

dependent compressible flow calculations are carried out

over a full cycle of inlet velocity variations starting from

rest. The density and temperature at inlet are assumed to

be uniform and constant throughout the complete cycle.

Two locations within the geometry are monitored such

that transient values of velocity (normalized by peak

velocity V) and pressure (normalized by inlet pressure) may

be analyzed during the compression/expansion cycle. The

first point is located at one-sixth the distance down the

duct from inlet and at 80% of the duct radius. This point

is referred to as the recirculation zone, as some of the

hiqhest reverse velocities occur at this location. The

second point, appropriately referred to as the centerline

zone, is located on the geometry's centerline halfway down

the duct.
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For the time-dependent calculations, a time step

size will be defined by dividing the period of the inlet

velocity cycle into a finite number of uniform increments.

The number of time steps per cycle will then be a parameter

used to characterize calculated results in comparisons

between the performance of the two algorithms.

2. Treatment of the Boundary Conditions

Along the walls and closed end, the usual no-slip

conditions hold for the momentum conservation equations.

The velocity components normal to the soiid boundaries are

prescribed as zero due to the impermeability of the walls.

For the PISO algorithm, all intermediate values of the

normal component of velocity, namely, u*, u**, and u*** (or

v*, v** and v***, ) are also set to zero at the wall.

When a normal component of velocity is prescribed at

the boundary, it follows that for both the SIMPLE and PISO

algorithms no information about the corresponding pressure

gradient is needed at that boundary; thus, the appropriate

"a" coefficient may be set to zero in the pressure-

correction (increment) equations (4.14), (4.24), and (4.30)

for the SIMPLE, PISO first corrector, and PISO second

corrector calculations, respectively.

For calculation of the energy conservation equation,

the wall temperatures are taken to be constant at the same

value as that at inlet. This condition implies that heat

transfer occurs at each of the walls.
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3. Solution Procedures

For the time-dependent flow calculations, each of

the algorithms generally followtheir respective method-

ologies as outlined in Chapter III. Of utmost concern here

is the attainment of accurate solutions at each time step.

For time-accurate solutions, iteration at each time step is

an absolute necessity for the SIMPLE algorithm, whereas the

non-iterative PISO method employs only a two-stage

predictor-corrector calculation once per time step. Conse-

quently, differences in these two methodologies dictate

separate requirements for the degree of accuracy to which

the set of linear algebraic equations (3.2), which are the

linearized representations of nonlinear fluid flow equa-

tions, must be solved.

The SIMPLE algorithm does not require highly

accurate intermediate values of the field variables as

iteration within each time step solves the full set of

conservation equations many times over, eventually converg-

ing to sufficiently accurate solutions. Consequently, its

TDMA solutions to the linear algebraic equations require

only moderate accuracy, thereby permitting the specification

of a small fixed number of TDMA solution iterations

(sweeps). For the SIMPLE algorithm, the number of fixed

TDMA sweeps is dependent upon the equation being solved_ for

u-velocity, v-velocity, and thermal energy equations, the

TDMA is solved 3 times, while for the pressure-correction

equation the number of TDMA sweeps is 5. This indicates



36

that the TDMA is invoked a total of 14 times per iteration

for the SIMPLE method.

The PISO algorithm, however, requires very accurate

intermediate solutions for the field variable _ since the

non-iterative scheme requires that continuity be suffi-

ciently satisfied at each stage. Thus, it is imperative

that each set of linear algebraic equations be adequately

solved by the TDMA. The PISO algorithm ensures this by

requiring that successive values of _ obtained after the

(k th) and (k th + 1) TDMA sweeps possess a maximum percent

difference less than a specified criterion, namely, 0.1%.

This practice requires repeating TDMA sweeps until satis-

factory _ solutions are obtained, thus no fixed number of

TDMA sweeps can be specified. More efficient methods such

as line successive over-relaxation (SOR) or coupled strongly

implicit procedure (CSIP) of Zedan and Schneider (1985) may

be incorporated to reduce the computational effort required

to produce acceptable _ solutions.

B. Stead7 State Compressible Flow

i. Demonstration Problem Geometry

For the steady state compressible flow case, a

similar geometry to that of the time-dependent case is used,

except that now the downstream end is opened such that fluid

may escape. The duct length is taken as 8 times duct

diameter in order to account for the longer recirculation

reattachment length of the open-end flow. The inlet

velocity is now assumed not to vary with time and is taken
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as the same peak velocity V used before corresponding to

Reynolds number of i000 and Mach number of 0.2. Here

intermediate temporal accuracy of the flow field is of no

concern, and only the steady state solution is sought. For

the purpose of defining a time step size, a characteristic

time will be defined as T = L/V, where L is the length of

the duct and V is the peak velocity. The time step size is

now defined by the uniform time increment obtained by

dividing the characteristic time, 7, by a finite number of

time steps.

2. Treatment of Boundary Conditions

Except for those prescribed for the outlet boundary,

the boundary conditions are handled identically as discussed

in section V.A.2. For momentum boundary conditions at the

outlet, the normal gradient of velocity is set to zero. In

this study, the outlet u-velocity component is set equal to

its adjacent upstream u-velocity component and the outlet v-

velocity component is set equal to zero. The zero normal

gradient of temperature at outlet applies for the thermal

energy equation. In the PISO algorithm, it is important

that the outlet density is explicitly set equal to its

adjacent upstream density value, which corresponds to zero

normal gradient of density at the outlet.

3o Solution pv_c_!_

Unlike the time-dependent compressible flow case,

transient calculations of the field variables are not

required to be time-accurate. The SIMPLE algorithm now
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omits the extra iterations required to obtain highly

accurate solutions at each time step, and considers each

iteration equilvalent to marching forward one time step.

Steady state conditions are assumed to exist when variation

of the field variables is negligible over many time steps.

In this study, the axial velocity components are monitored

in three locations for determination of steady state

conditions; these being at the recirculation zone location,

the centerline zone location, and at 50% radius in the

outlet plane. Steady state was assumed when the maximum

standard deviation, computed over 5 time steps, of the three

locations was less than 0.01.

The TDMA solution of the set of linear equations by

the SIMPLEmethod is identical to the procedure previously

discussed calculation in section V.A.3, whereas the PISO

algorithm was optimized for efficiency by testing percent

difference convergence criteria of I0%, 5%, 1%, and 0.5%, as

well as its original 0.1%.



CHAPTER VI PRESENTATION AND DISCUSSION OF RESULTS

A. Time-dependent Compressib_@Flow

Calculations were first performed on a relatively

coarse 20x20 grid using the iterative time-marching SIMPLE

algorithm to determine the time step size, dr, at which a

time-step independent solution could be assumed. Figures

6.1 and 6.2 show the predicted transient behavior of the

centerline and recirculation zones, respectively, by plot-

ting the axial velocity, normalized with respect to peak

sinusoidal velocity V, versus the time coordinate, normal-

ized by the period of the inlet velocity cycle. A time-step

independent solution is seen to exist at 750 time steps per

cycle. The resulting streamline contours and corresponding

velocity vector plots for both monitor locations are shown

in Figures 6.3 through 6.6. Figures 6.3 and 6.4 correspond

to velocity conditions at the normalized cycle time of 0.35

and Figures 6.5 and 6.6 correspond to a normalized time of

0.70. Figures 6.3 through 6.6 is representative of the

results obtained from both SIMPLE and PISO.

In Figures 6.7 and 6.8, comparisons are made between

the velocity predictions calculated by PISO using the time

step size 1/750 and the corresponding time step independent

solution given by SIMPLE. The PISO algorithm is shown to

produce results which closely mimic those of the time-

marching SIMPLE. The small discrepancies are thought to be

39
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due to inaccuracies incurred from SIMPLE's practice of

treating the equation of state as an auxiliary equation,

rather than, as in PISO, directly incorporating it into the

derivation of a pressure field equation. By segregating the

equation of state from this derivation, SIMPLE's coupling

between temperature and pressure appears to be incomplete,

which could thereby produce inaccuracies in all resulting

field variables.

The importance of correctly treating SIMPLE's

temperature-pressure coupling is clearly obvious when these

effects, namely, the expansivity correction terms of

equation (4.12), are neglected during flow calculations.

Figures 6.9 and 6.10 display the transient velocity

predictions obtained when these expansivity effects are

neglected (i.e. pressure-temperature coupling neglected) in

equation (4.12) and (4.14). The resulting pressure field is

severely underpredicted throughout the calculation domain as

is indicated by Figure 6.11, which physically corresponds to

the pressure field resulting from near isothermal condi-

tions. Based on the existence of deviant SIMPLE solutions

when the expansivity effects in equation (4.12) are omitted

(or diminished), it is questioned whether SIMPLE's tempera-

ture-pressure coupling scheme, as implemented in this study,

is as strong or accurate as that of the rigorously developed

PISO algorithm.

One final note should be made regarding SIMPLE's

generalized pressure-velocity coupling scheme and its
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related expansivity correction terms. It was found neces-

sary that the complete form of equation (4.12) be invoked

for temperature-pressure coupling, whereas no obvious

difficulties arose when the expansivity source term b T in

equation (.4.14) was omitted. A slight computational time

decrease (5%) in time-dependent computations was experienced

when the b T source term was neglected, while negligible

discrepancies were observed in the resulting field variable

values over the time cycle.

Figures 6.12 and 6.13 illustrates the time step

independent nature and applicability of PISO for steady

state analysis in that very large time steps can be taken

with no stability difficulties in the solution procedure.

Although the SIMPLE algorithm also indicates the ability to

handle larger time steps, the non-iterative nature of PISO

endows it with a favorable advantage of producing stable

results at lower computing times as indicated by Table 6.1.

The PISO algorithm consistantly requires 1/3 the computing

effort as does SIMPLE, regardless of the time step size

employed. Similar computational savings hold for results

obtained using the SIMPLEC enhancement to the SIMPLE

algorithm, in which negligible computational time differ-

ences are observed between SIMPLE and its variant, SIMPLEC.
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Table 6.1 Comparison of Computational Efficiency for
Various Time Step Sizes

55

Solution Time Steps CPU Time PISO/SIMPLE
Algorithm per Cycle (mins) CPU Time Ratio

PISO i000 60 0.328
SIMPLE i000 183

PISO 750 44 0.297
SIMPLE 750 148

PISO 500 31 0.344

SIMPLE 500 90

PISO 250 16 0.364

SIMPLE 250 44

Next, the influence of grid size on the solutions of

both the PISO and SIMPLE algorithms was determined. Figures

6.14 and 6.15 illustrate the transient velocity profiles

obtained for various grid sizes using the PISO algorithm.

The SIMPLE algorithm exhibits similar results. Notice that

for each grid size used, significant discrepancies, namely,

recirculation strength differences, occur at the recir-

culation zone location, whereas the centerline zone solution

is relatively independent of the particular grid size

employed. This observation can be attributed to the

"numerical diffusion" associated with nonalignment of the

coordinate grid with the flow direction.

The basic cause of numerical diffusion is treating

the flow across each control volume face as locally one-

dimensional [Patankar (1980)]. If the velocity vectors are
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oblique to the grid lines, as they are in the recirculation

local velocity field, then the flow into the control volume

is highly skewed with respect to the control volume face and

results in numerical diffusion. On the other hand, velocity

vectors such as exists in the centerline zone are fairly

aligned with the coordinate grid, and the magnitude of

numerical diffusion is greatly reduced, thus giving almost

grid independent solutions.

By using sufficiently fine grids, the numerical

diffusion may be reduced to tolerable levels, but this

practice proves to be impractical due to increased computa-

tional costs. In Figure 6.14 the strength of the recir-

culation region is seen to increase as the grid is refined,

which is a result of decreased numerical d_ffusion leading

from the finer grid sizes.

Recent works [Benodekar et al. (1985)] have found

the hybrid method and its "lower order of accuracy" lacking

when attempting to predict gross features of the recir-

culation zone, namely, underpredicting the recirculation

region dimensions. Schemes which involve more neighbors in

the discretization equation, such as those mentioned in

section III.B of Raithby (1976) and Leonard (1979), give

less numerical diffusion, but are significantly more

complicated than the hybrid scheme.

Due to extraordinarily long computing times and

increased storage requirements necessary for fine grids, no

grid-independent solution was obtained for either algorithm.
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Solutions from each algorithm, though, are compared for a

case of 40x40 grid size and 750 time steps per cycle in

Figures 6.16 and 6.17, which shows very close qualitative

resemblances to the 20x20 grid results of Figure 6.7 and

6.8, respectively. The main difference between the 40x40

and 20x20 sets of results is an increased recirculation zone

strength for the 40x40 case resulting from the decreased

numerical diffusion of the more refined grid. It is

interesting to note that PISO has maintained, as before, an

approximate 60% time savings in computing effort for each

grid size employed as shown in Table 6.2.

Table 6.2 Comparison of Computational Efficiency for
Various Grid Sizes

Solution Grid CPU Time PISO/SIMPLE
Algorithm Size (mins) CPU Time Ratio

PISO 20x20 44 0.297
SIMPLE 20x20 148

PISO 30x30 106 0.348

SIMPLE 30x30 305

PISO 40x40 204 0.348
SIMPLE 40x40 586

B. Steady State Compressible Flow

The first step in computing a steady state compress-

for various time steps per characteristic time period,

namely, 25,50, and 75, in order to study the general flow
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field characteristics. The streamline contour plot corre-

sponding to 75 time steps per cycle is shown in Figure 6.18

and is also representative of similar results obtained from

SIMPLEC and PISO. The recirculation zone reattachment

length is shown to be approximately 0.6 of the duct length,

which is approximately 20 step heights. A literature search

yielded no information pertaining to laminar, compressible

axisymmetric pipe-expansion flow, however, the work of Milos

and Acrivos (1987) was found, which haveperformed numerical

simulations of laminar, incompressible, two-dimensional flow

past a sudden expansion at large Reynolds number. From

Milos et al. (1987) work, the corresponding incompressible

flow situation as compared to this study's steady state

compressible case, i.e. same Reynolds number and diameter

ratio, displayed reattachment lengths of between 18 and 25

step heights. This indicates that the compressible flow

characteristics as computed by the SIMPLE and PISO algorithm

are in general agreement with similar previous work dealing

with incompressible flow, even though some unknown discrep-

ancies may exist due to the differing nature of the flows.

In the case of steady state calculations, when

temporal accuracy is of no consequence, the convergence

tolerance on the TDMA solution of the set of linear

algebraic equations may be relaxed at each time step. With

this in mind, PISO reduced the stringency of its convergence

criterion, whereas, the SIMPLE method continued using the

same TDMA procedure as before, i.e. 14 total TDMA sweeps per
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time step. Attempts of specifying a fixed number of TDMA

weeps for the PISO method yielded totally unstable solu-

tions; therefore, the variable TDMA sweep approach was

retained, and the effects of varying the percent difference

convergence criterion were studied. Figure 6.19 illustrates

that PISO, using i0 time steps per cycle and 20x20 grid

size, was computationally most efficient at a convergence

criterion of 1% for the maximum percent difference existing

between solutions arising from successive TDMA sweeps.

Comparisons were then made between SIMPLE, PISO

(employing a convergence criterion of 1%), and the SIMPLEC

variant of SIMPLE for various time step sizes. Figure 6.20

shows that for a range of smaller time steps sizes, i.e.

number of time steps per time greater than 25 and less than

75, both the SIMPLE and SIMPLEC methods exhibit favorable

advantages over PISO in terms of computational effort. For

the larger time steps, however, both SIMPLE algorithms

diverged, whereas, the PISO algorithm remained stable and

also gained a slight advantage in computational efficiency.

Figure 6.20 is somewhat surprising when compared to results

obtained from similar studies performed on incompressible

flows by Issa et al. (1986). For incompressible steady

state flows, Issa et al. (1986) found that PISO exhibited

consistant computing time advantages over a steady state

version of SIMPLE, and also maintained remarkable stability

and robustness over a wide range of time step sizes. The

PISO method, however, displays an entirely different nature
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in steady state compressible flow analysis, in that

computational time advantages, in general, belong to SIMPLE

and no robust nature is exhibited.

In an attempt to explain this sudden reversal of

PISO's superiority over SIMPLE when applied to steady state

compressible flow calculations, two observations can be

made; first, PISO requires more computational time per time

step (iteration) than SIMPLE, and secondly, SIMPLE exhibits

different performance behavior for steady state incompress-

ible and compressible flow calculations. If we examine the

total number of time steps required for each algorithm to

obtain steady state results versus the time step size, as

shown in Figure 6.21, the statement that PISO requires more

computational time per time step seems contradictory.

However, Figure 6.22 indicates that PISO's total number of

TDMA sweeps per time step, which is taken as a relative

measure of computational effort per time step, is consis-

tently higher than the fixed 14 total TDMA sweeps per time

step of SIMPLE and SIMPLEC. Therefore, although PISO may

actually require fewer, or an equal, number of total time

steps to obtain steady state conditions than SIMPLE, the

actual computational effort due to strict TDMA solution

requirements is significantly higher at each time step.

Addressing the second point, it is essential to

understand that the iterative SIMPLE method, when applied to

incompressible flows whether as a time-marching or steady

state version, requires substantial under-relaxation of the
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momentum equations in order to obtain convergent solutions

as illustrated by Issa et al. (1986). But when applied to

steady state compressible flows, all calculations performed

in our study required no under-relaxation for both the

SIMPLE and SIMPLEC methods and only experienced stability

difficulties for which under-relaxation was ineffective.

This unique characteristic is apparently due to the

additional density variations of compressible flows and is

not found in incompressible flows. Thus, in incompressible

calculations, the total number of time steps required to

obtain steady state conditions is increased due to the

under-relaxation of the momentum equations as compared to

its compressible flow counterpart. This increased number of

required time steps is then more computationally detrimental

to SIMPLE than is PISO's own disadvantage of higher

computing effort per time step, and thereby establishes PISO

as the most efficient algorithm for incompressible flows.

In developing a generalized flow solver, the time-

dependent flow case indicated the necessity of including

expansivity terms to account for temperature-pressure

coupling for flows in which these effects were important.

For the steady state compressible open-end pipe expansion

geometry, the temperature-pressure coupling is not as strong

as in a compression/expansion type process, as Figure 6.23

illustrates for temporal axial velocity variations leading

to steady state conditions. For this flow case, identical

steady state conditions for all field variables were



1 .00
I I I I I I I I i

0.8

0.6

0
0

-@
>

13

N

E
L
0

Z

0.4

0.2

0.0

-0.12

With Expansivlty (Centerline)

Without ExpanBivlty (Centerline)

With Expansiv±ty (Rec±rculation)

Without Expans±vlty (Rec±rculatlon)

oo.

I I I I
30 . 60 . 90 . _20 .

Number

I I I
150 . _80 . 2_0 .

of Time Steps

I I
_40 . 270 . 300 .

Figure 6.23 SIMPLE Temporal Velocity Variations

With and Without Expansivity for

T3me Step S_ze of _/50
H



72

achieved whether or not the expansivity terms of (4.12) or

(4.14) were included in the calculations.

Figure 6.24 illustrates the streamline contour plot

of flow conditions existing for calculations ran using a

grid size of 40x40 and is representative of both the SIMPLE

and PISO algorithm results. A time step size corresponding

to 100 time steps per characteristic time period was

employed due to the tendancy of SIMPLE to diverge at larger

time step sizes when the 40x40 grid was used. The gross

recirculation zone dimensions agree very well with those

obtained using a 20x20 grid. Of significance, however, is

the fact that the PISO algorithm required 3 times the

computational effort as compared to the SIMPLE method to

obtain steady state conditions.

One final topic of interest evolves from analysis of

the 40x40 grid size case, that concerning the normalized

steady state pressure plots. Figure 6.25 compares the

development of the steady state normalized pressure existing

at the centerline zone location for SIMPLE and PISO using

40x40 grids. It is observed that both methods yield a final

normalized centerline pressure of approximately 1.01 which

may be taken as an accurate reference value due to the fine

grid size and small time step size employed. Examining

similar plots for the 20x20 SIMPLE, SIMPLEC, and PISO

algorithms in Figures 6.26, 6.27, and 6.28, respectively, it

is observed that for each algorithm the final normalized

centerline pressures deviate from 1.01 when the number of
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time steps per characteristic time period is equal to 25 or

less. This observation raises the question of whether

correct steady state values actually exist for this range of

time step size values, even though the temporal numerical

variations of the variables have decayed to negligible

levels. The slight computational advantage that PISO held

over the SIMPLE method as shown in Figure 6.20 may now be

irrelevant if, indeed, the results produced in this time

step size range are erroneous.



CHAPTERVII CONCLUDING REMARKS

In this study we have considered two pressure-

velocity coupling schemes capable of handling both compress-

ible and incompressible flow situations. The relative

performance of each method, was compared for two test cases

involving laminar compressible flows in an axisymmetric

sudden pipe expansion geometry.

Preliminary results obtained from the time-dependent

compression/expansion test case indicated that pressure-

temperature coupling effects are non-negiigible and should

be taken into account when a generalized approach is adopted

for solving fluid flow equations. This study illustrates

that the rigorous development of the PISO algorithm

inherently and completely handles pressure-temperature

coupling, whereas the SIMPLE algorithm requires additional

density correction. While both algorithms yields results in

agreement with the other, substantial time savings are

realized in the calculation of time-dependent compressible

flows by PISO over both the SIMPLE and SIMPLEC methods

regardless of the time step size or grid size employed.

Substantial numerical diffusion prevented a grid-independent

solution to be obtained for either algorithm.

Results from the steady state test case again

indicate good agreement between PISO, SIMPLE, and SIMPLEC

numerical predictions. However, both SIMPLE and SIMPLEC
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display overall lower computational efforts than the PISO

method when the solution procedure involves small temporal

time step sizes. PISO does exhibit slight time savings over

SIMPLE and SIMPLEC when larger time step sizes are employed,

but the accuracy of the resulting field variables are

questionable.

It is recommended that additional studies be carried

out evaluating the performance of each algorithm under

steady state, turbulent, compressible flow conditions. The

strong coupling between the turbulence source terms and the

velocity field may require enough under-relaxation in the

SIMPLE algorithm such that the non-iterative PISO method

would perform more effectively in terms of computational

efficiency. An additional recommendation is that a higher

order accurate discretization scheme be implemented in order

to investigate the effects of reducing the numerical

diffusion in the calculation domain where the velocity field

is skewed to the coordinate grid.
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